Data Encryption Standard (DES)

Dr. Asem Kitana

Overview of DES

- Symmetric block cipher.
- 56-bit key.
- 64-bit input block, 64-bit output block.
- Developed in 1977 by National Institute of Standards and Technology (NIST); and designed by IBM.

Simplified DES (S-DES)

- Input (plaintext) block: 8-bits
- Output (ciphertext) block: 8-bits
- Key: 10-bits
- Rounds: 2
- Round keys generated using permutations and left shifts
- Encryption: initial permutation, round function, switch halves
- Decryption: Same as encryption, except round keys used in opposite order

S-DES Algorithm

S-DES Round Keys Generation

S-DES Key Generation and Encryption

Secret key

Ciphertext

S-DES Key Generation and Decryption
Secret key

Plaintext

S-DES Round Function

S-DES Permutations

- Permutation means transposition or rearrangement of bits.
$>$ P10 (permutation)

Input	1	2	3	4	5	6	7	8	9	10
Output	3	5	2	7	4	10	1	9	8	6

$>$ P8 (selection and permutation)

Input	1	2	3	4	5	6	7	8	9	10
Output	6	3	7	4	8	5	10	9		

$>$ P4 (permutation)

Input	1	2	3	4
Output	2	4	3	1

S-DES Operations

$>E P$ (Expansion and Permutation)

Input	1	2	3	4				
Output	4	1	2	3	2	3	4	1

>IP (Initial Permutation)

Input	1	2	3	4	5	6	7	8
Output	2	6	3	1	4	8	5	7

$>I P^{-1}$ (Inverse of Initial Permutation)

Input	1	2	3	4	5	6	7	8
Output	4	1	3	5	7	2	8	6

S-DES Operations

- LS-1: left shift by 1 position
- LS-2: left shift by 2 positions
- $I P^{-1}$: inverse of IP, such that $\mathrm{X}=I P^{-1}(\mathrm{IP}(\mathrm{X}))$
- SW: swap the halves (Switching Function)
- f_{K} : round function using round key K
- F: internal function in each round

XOR Table

- If the bits are similar, the output is 0
- If the bits are different, the output is 1

A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

S-Boxes of S-DES

- S-Box considered as a matrix: input used to select row/column; selected element is output
- 4-bit input: bit $_{1}$, bit $_{2}$, bit $_{3}$, bit $_{4}$
- bit $_{1}$ bit $_{4}$ specifies row (0, 1, 2 or 3 in decimal)
- bit $_{2}$ bit $_{3}$ specifies column
- 2-bit output
- Indexing of S-Boxes starts from 0 to 3 for rows and columns.

S-Boxes of S-DES

$$
S O=\left[\begin{array}{llll}
01 & 0 & 11 & 10 \\
11 & 10 & 0 & 00 \\
00 & 10 & 01 & 11 \\
11 & 01 & 11 & 10
\end{array}\right] S 1=\left[\begin{array}{llll}
00 & 0 & 10 & 11 \\
10 & 00 & 01 & 11 \\
11 & 0 & 01 & 00 \\
10 & 01 & 00 & 11
\end{array}\right]
$$

S-Boxes of S-DES

$$
S 0=\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
3 & 2 & 1 & 0 \\
0 & 2 & 1 & 3 \\
3 & 1 & 3 & 2
\end{array}\right] \quad S 1=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
2 & 0 & 1 & 3 \\
3 & 0 & 1 & 0 \\
2 & 1 & 0 & 3
\end{array}\right]
$$

S-DES vs. DES

	S-DES	DES
Block size	8 bits	64 bits
Key size	10 bits	56 bits
Rounds	2	16
IP	8 bits	64 bits
S-Boxes	2	8
Round keys	2	16
Round key size	8 bits	48 bits

S-DES summary

- Educational encryption algorithm
- S-DES expressed as functions:

$$
\begin{aligned}
& \text { ciphertext }=\operatorname{IP}^{-1}\left(f_{K_{2}}\left(\operatorname{sw}\left(f_{K_{1}}(\operatorname{IP}(\text { plaintext }))\right)\right)\right) \\
& \text { plaintext }=\operatorname{IP}^{-1}\left(f_{K_{1}}\left(\operatorname{sw}\left(f_{K_{2}}(\operatorname{IP}(\text { ciphertext }))\right)\right)\right)
\end{aligned}
$$

- Brute force attack on S-DES is easy since only 10-bit key
- If we know plaintext and corresponding ciphertext, can we determine key? Very hard

Example1

Deploying S-DES cipher, encrypt the plaintext (01110010) using the key (1010000010).
*Round keys generation (k_{1} and k_{2}):
K: 1010000010 (10-bit key)
P10: 1000001100
LS-1: 0000111000 (deployed on both halves of P10)
P8: 10100100 (represents k_{1})
LS-2: 0010000011 (deployed on both halves of LS-1)
P8: 01000011 (represents k_{2})
k_{1} and k_{2} (each 8-bit) are used as inputs in the encryption and decryption stages.

Example1, cont.

Encryption:
> Round1:
Plaintext: 01110010
IP: 10101001
R-half: 1001
L-half: 1010
EP: 11000011 (deployed on R-half)
XOR: 01100111 (EP XOR k_{1}, which represents substitution)
SO: 0110 (left half of XOR deployed on S-Box 0)
row = 00 (decimal 0)
column = 11 (decimal 3)
output $=10$ (row 0 and column 3 of SO)

Example1, cont.

S1: 0111 (right half of XOR deployed on S-Box 1)
row $=01$ (decimal 1)
column = 11 (decimal 3)
output = 11 (row 1 and column 3 of S1)
S0S1: 1011
P4: 0111 (deployed on SOS1)
XOR: 1101 (P4 XOR L-half)
Result: 11011001 (XOR + R-half)
End of round1
SW: 10011101 (swapping the two halves of Result)
The output of SW function (10011101) is used as input in round2.

Example1, cont.

$>$ Round2:
SW: 10011101
R-half: 1101
L-half: 1001
EP: 11101011 (deployed on R-half)
XOR: 10101000 (EP XOR k_{2})
SO: 1010 (left half of XOR deployed on S-Box 0)

$$
\text { row = } 10 \text { (decimal } 2)
$$

$$
\text { column = } 01 \text { (decimal 1) }
$$

output = 10 (row 2 and column 1 of SO)

Example1, cont.

S1: 1000 (right half of XOR deployed on S-Box 1)
row $=10$ (decimal 2)
column = 00 (decimal 0)
output = 11 (row 2 and column 0 of S 1)
SOS1: 1011
P4: 0111 (deployed on S0S1)
XOR: 1110 (P4 XOR L-half)
Result: 11101101 (XOR + R-half)
$\mathrm{IP}^{-1}: 01110111$
The ciphertext is (01110111)

Example2

- Deploying S-DES algorithm, decrypt the ciphertext (00111000) using the key (1010000010).

DES Algorithm

